
A Tourist Guide through TreewidthHans L. Bodlaender�Department of Computer Science, Utrecht UniversityP.O.Box 80.089, 3508 TB Utrecht, the NetherlandsAbstractA short overview is given of many recent results in algorithmic graphtheory that deal with the notions treewidth, and pathwidth. We discuss algo-rithms that �nd tree-decompositions, algorithms that use tree-decompositionsto solve hard problems e�ciently, graph minor theory, and some applications.The paper contains an extensive bibliography.1 IntroductionIn recent years, the notions `treewidth', `pathwidth', `tree-decomposition', and`path-decomposition' have received a growing interest. These notions underly severalimportant and sometimes very deep results in graph theory and graph algorithms,and are very useful for the analysis of several practical problems.In this paper, we give an overview of a number of these applications, and algo-rithmic results. In section 2 we give the main de�nitions. Applications of the notionsdiscussed in this paper are given in section 3. In section 4 we explain the basic ideabehind linear time algorithms on graphs with constant bounded treewidth. In sec-tion 5 we review some results that deal with graph minors. In section 6 we discussalgorithms that �nd `suitable' tree- or path-decompositions.It should be noted that the constant factors, hidden in the `O'-notation can bequite large for several of the algorithms, discussed in this paper. In many cases,additional ideas will be required to turn the methods, described here, into reallypractical algorithms.2 De�nitionsIn this section we give the most important de�nitions, with an example. The notionsof treewidth and pathwidth were introduced by Robertson and Seymour [109, 115].�email: hansb@cs.ruu.nl. This work was partially supported by the ESPRIT Basic ResearchActions of the EC under contract 7141 (project ALCOM II).1
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kFigure 1: Example of a graph with tree- and path-decompositionDe�nition. A tree-decomposition of a graph G = (V;E) is a pair(fXi j i 2 Ig; T = (I; F )) with fXi j i 2 Ig a family of subsets of V , one for eachnode of T , and T a tree such that� Si2I Xi = V .� for all edges (v; w) 2 E, there exists an i 2 I with v 2 Xi and w 2 Xi.� for all i; j; k 2 I: if j is on the path from i to k in T , then Xi \Xk � Xj.The treewidth of a tree-decomposition (fXi j i 2 Ig; T = (I; F )) is maxi2I jXij � 1.The treewidth of a graph G is the minimum treewidth over all possible tree-decompositions of G.The notion of pathwidth is de�ned similarly. Now T must be a path.De�nition. A path-decomposition of a graph G = (V;E) is a sequence of subsetsof vertices (X1; X2; : : : ; Xr), such that� S1�i�rXi = V .� for all edges (v; w) 2 E, there exists an i, 1 � i � r, with v 2 Xi and w 2 Xi.� for all i; j; k 2 I: if i � j � k, then Xi \Xk � Xj.2
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3 tracksFigure 2: Example of gate matrix layoutThe pathwidth of a path-decomposition (X1; X2; : : : ; Xr) is max1�i�r jXij � 1.The pathwidth of a graph G is the minimum pathwidth over all possible path-decompositions of G.In �gure 1, an example of a graph with treewidth and pathwidth 2 is given, togetherwith a tree- and path-decomposition of it.Clearly, the pathwidth of a graph is at least its treewidth. There are severalequivalent characterizations of the notions of treewidth and pathwidth, see e.g. [3,15, 18, 99, 143]. The (probably) most well known equivalent characterization oftreewidth is by the notion `partial k-tree', see [132, 139]. Also, tree decompositionsare re
ected by graph expressions, where graphs are built by operations on graphswith some special vertices (the sources) like: parallel composition, forget sources,renaming of sources. The treewidth can be characterized in terms of the number ofsources used in the operations. See [50].3 ApplicationsSeveral well-studied graph classes have bounded treewidth or pathwidth, hence manyresults discussed here also apply for these classes. Examples are trees (treewidth1), series-parallel graphs (treewidth 2), outerplanar graphs (treewidth 2), and Halingraphs (treewidth 3). See e.g. [18, 20, 132, 143]. We mention some other applica-tions.3.1 VLSI layoutsA well studied problem in VLSI layout theory is the Gate Matrix Layout prob-lem. This problem is stated in terms of a matrix M = (mij), whose columnsrepresent gates G1; : : : ; Gn, and whose rows represent nets N1; : : : ; Nm. If mij = 1,then net Ni must be connected with gate Gj. An example is given in �gure 2. The3



problem of �nding a permutation of the gates, such that all nets can be made withinthe minimum number of tracks is equivalent to the pathwidth problem (see [63]).See [99] for an extensive overview. See also [53].3.2 Cholesky factorizationThere is also a close connection between treewidth, and Choleski factorization onsparse symmetric matrices.In the multifrontal method for Choleski factorization, one step is of the form" d vTv B # = " pd 0v=pd I # � " 1 00 B � v � vT=d # � " pd vT=pd0 I #where v is an (n � 1)-vector, and B is an n � 1 by n � 1 maxtrix. I is the n � 1by n � 1 identity matrix. The process is repeated with the matrix B � v � vT .Consider the graph with vertices 1; 2; : : : ; n, and edges between vertices i and j, ifthe matrix entries on positions (i; j) and (j; i) are non-zero. One step as describedabove corresponds to removing a vertex and connecting all its neighbors. As thematrix is sparse, one wants to �nd an order of colums/rows to be eliminated forwhich all matrices v � vT are small, i.e. have a large number of columns and rowsthat are entirely 0. One can show that to bound the maximum size of these matricescorresponds to bounding the treewidth of the graph, described above. For moredetails, see e.g. [29].3.3 Expert systemsGraphs modelling certain type of expert systems have been observed to have smalltreewidth in practice. Tree-decompositions of small treewidth for these graphs canbe used to perform e�ciently certian otherwise time-consuming statistical compu-tations needed for reasoning with uncertainity in these systems. See e.g. [92, 138].3.4 Evolution theoryResearchers in molecular biology are interested in the problem, given a set of species,a set of characteristics, and for each specie and each characteristic, the value thatthat characteristic has for that specie, to �nd a `good' evolution tree for thesespecies and their possibly extinct ancestors. One variant of this problem is calledthe Perfect Phylogeny problem. This problem can be shown to be equivalentwith the following graph problem: given a graph G = (V;E) with a coloring of thevertices, can we add edges to G such that the resulting graph is chordal but hasno edges between vertices of the same color? Equivalently, does there exist a tree-decomposition (fXi j i 2 Ig; T ) of G such that for all i 2 I: if v; w 2 Xi, v 6= w,then v and w have di�erent colors. So, a necessary condition is that the treewidthof G is smaller than the number of colors. See [2, 28, 33, 79, 80, 98].4



3.5 Natural language processingKornai and Tuza [88] have observed that dependency graphs of sentences encodingthe major syntactic relations among the words have usually pathwidth at most 6.The pathwidth closely resembles the narrowness of these graphs. For the relationshipof this notion to natural language processing, see [88].4 Bounded treewidth and linear time algorithmsAn important reason for the interest in tree-decompositions, is that if we have atree-decomposition of a graph G = (V;E) with its treewidth bounded by some �xedconstant k, then we can solve many problems that are hard (intractable) for arbitrarygraphs, in polynomial and often linear time. Problems which can be dealt with inthis way include many well-known NP-complete problems, like Independent Set,Hamiltonian circuit, Steiner Tree, etc., but also certain statistical computa-tions (including some with applications to reasoning with uncertainity in expert sys-tems [92, 138]), and some PSPACE-complete problems [4, 5, 26]. Results of this typecan be found | among others | in [3, 4, 5, 8, 10, 14, 19, 26, 22, 31, 37, 44, 47, 52,55, 67, 69, 71, 73, 74, 75, 87, 90, 93, 94, 95, 96, 107, 132, 137, 141, 142, 143, 144, 145].As an example we consider the maximum independent set problem. In thisproblem, we a looking for the maximum size of a set W � V in a given graphG = (V;E), such that for all v; w 2 W : (v; w) 62 E.Given a tree-decomposition, it is easy to make one with the same treewidth,and with T a rooted binary tree. Suppose we have such a tree-decomposition(fXi j i 2 Ig; T = (I; F )) of input graph G, with root of T r, and with treewidth k.For each i 2 I, de�ne Yi = fv 2 Xj j j = i or j is a descendant of ig.Note that if v 2 Yi, and v 2 Xj for some node j 2 I that is not a descendantof i, then by de�nition of tree-decomposition, v 2 Xi. Similarly, if v 2 Yi, and v isadjacent to a vertex w 2 Xj with j a descendant of i, then v 2 Xi or w 2 Xi. Asa consequence, we have that, when we have an independent set W of the subgraphinduced by Yi, G[Yi], and want to extend this to an independent set of G, thenimportant is only what vertices in Xi belong to W , not what vertices in Yi � Xibelong to W . Of the latter, only the number of the vertices in W is important.For i 2 I, Z � Xi, de�ne isi(Z) to be the maximum size of an independent setW in G[Yi] with W \Xi = Z. Take isi(Z) = �1, if no such set exists.Our algorithm to solve the independent set problem on G basically consists ofcomputing all tables isi, for all nodes i 2 I. This is done in a bottom-up mannerin the tree: each table isi is computed after the tables of the children of node i arecomputed. For a leaf node i, the following formula can be used to compute all 2jXijvalues in the table isi.isi(Z) = ( jZj if 8v; w 2 Z : (v; w) 62 E�1 if 9v; w 2 Z : (v; w) 2 E5



For an internal node i with two children j and k, we have the following formula.isi(Z) =8>>><>>>: maxfisj(Z 0) + isk(Z 00) + jZ \ (Xi �Xj �Xk)j�jZ \Xj \Xkj j Z \Xj = Z 0 \Xiand Z \Xk = Z 00 \Xig if 8v; w 2 Z : (v; w) 62 E�1 if 9v; w 2 Z : (v; w) 2 EThe idea behind the last formula is: take the maximum over all sets Z 0 � Xjthat agree with Z in which vertices in Xi \Xj belong to the independent set, andsimilarly for Z 00 � Xk. Vertices in Z \Xi � Xj �Xk are not counted yet, so theirnumber should be added, while vertices in Z \ Xj \ Xk are counted twice, hencetheir number should be subtracted once.We compute for each node i 2 I the table isi in some bottom-up order, until wehave computed the table isr. Note that we then can easily �nd the maximum size ofan independent set in G, as this is maxZ�Xr isr(Z). Hence, we have an algorithm,that solves the independent set problem on G in O(23kn) time. (Optimizations canbring the factor 23k down to 2k.) It is also possible, by using standard dynamicprogramming techniques, to construct the maximum sized independent set W itself.The idea behind this example is: each table entry gives information about anequivalence class of partial solutions. The number of such equivalence classes isbounded by some constant, when the treewidth is bounded by a constant. Tablescan be computed using only the tables of the children of the node.The technique works for many examples. However, there are also results thatstate that large classes of problems can be solved in linear time, when a tree-decomposition with constant bounded treewidth is available. One of the most pow-erfull results of this type is the result by Courcelle [47, 51, 46], which has beenextended by Arnborg et al [8], by Borie et al [38], and by Courcelle and Mosbah[52], on (Extended) Monadic Second Order formulas. These result basically statethat each graph problem that is expressible with a formula using the following lan-guage constructions: logical operations (^; _; :; )), quanti�cation over vertices,edges, sets of vertices, sets of edges (e.g. 9v 2 V , 8e 2 E, 8W � V , 9F � E),membership tests (v 2 W , e 2 E), adjacency tests (v; w) 2 E, v is endpoint of e),and certain extensions, can be solved in linear time on graphs with given a tree-decomposition of constant bounded treewidth. The extensions allow not only to dealwith decision problems, but also optimization problems (like maximum independentset).For example, the problem whether a given graph G can be colored with threecolors can be stated as9W1 � V : 9W2 � V : 9W3 � V : 8v 2 V : (v 2 W1 _ v 2 W2 _ v 2W3)^8v 2 V : 8w 2 W : (v; w) 2 E ) (:(v 2 W1^w 2 W1)^:(v 2W2 ^ w 2 W2) ^ :(v 2 W3 ^ w 2 W3))6



G

HFigure 3: G is a minor of HIn many cases, the information, computed per node i 2 I is an element of a�nite set. Then, the algorithm can be seen as a �nite state tree-automata, andoptimalization techniques can be applied, similar to Myhill-Nerode theory [14, 62].(See also [48, 45, 49].)In [64, 65] parametric problems on graphs with bounded treewidth are solved,using modi�cations of the technique, presented above.For some problems (e.g. the maximum independent set problem) polynomialtime algorithms are still known to exist, if the input graph is given together with atree-decomposition of treewidth O(logn). (See e.g. [19].) For other problems, it isunknown whether such algorithms exist.The problem whether two given graphs are isomorphic is also solvable in poly-nomial time, when the graphs have bounded treewidth [11, 22, 42]. The techniquesare here somewhat di�erent.There also exist problems that remain hard when restricted to graphs with con-stant bounded treewidth, for instance the bandwidth problem is NP-complete for avery restricted subclass of the trees [100]. For some problems the complexity whenwe restrict the instances to graphs with bounded treewidth is open, like the problemto determine the pathwidth of graphs with treewidth � 2 [30].5 Graph minorsIn this section, we give a short overview of some recent results on graph minors.A graph H = (W;F ) is a minor of a graph G = (V;E), if (a graph isomorphicto) H can be obtained from G by a series of zero or more vertex deletions, edgedeletions, and/or edge contractions (in arbitrary order), where an edge contractionis the operation to replace two adjacent vertices v and w by a vertex that is adjacentto all vertices that were adjacent to v or w. For an example, see �gure 3.Robertson and Seymour obtained the following deep results on graph minors7



[17, 109, 115, 111, 122, 122, 116, 117, 121, 124, 123, 125, 114, 118, 119, 120, 126,127, 128, 129, 110, 112, 113].Theorem 5.1For every class of graphs G, that is closed under taking of minors, there exists a�nite set of graphs, ob(G), called the obstruction set of G, such that for each graphG: G 2 G, if and only if there is no H 2 ob(G) that is a minor of G.For example, the obstruction set of the planar graphs is fK5; K3;3g [140]. Theorem5.1 was formerly known as Wagners conjecture.Theorem 5.2For every graph H, there exists an O(n3) algorithm, that, given a graph G, testswhether H is a minor of G.Theorem 5.3For every planar graph H, there exists a constant cH , such that for every graph G:if H is not a minor of G, then the treewidth of G is at most cH .The constant factor of the algorithm in theorem 5.2 is very high, making this algo-rithm not suitable for practical use. In [129], it is shown that one can take in 5.3cH = 204jVH j+8jEH j5. From theorem 5.1 and theorem 5.2 it follows that every class ofgraphs, closed under minor taking, is recognizable in O(n3) time (do a minor testfor each graph in the obstruction set.) Using theorem 5.1, theorem 5.3, the resultof the next section, that states that for graphs with constant bounded treewidth, atree-decomposition of constant bounded treewidth can be found in O(n) time, andthe fact, that with such a tree-decomposition, minor tests can be done in lineartime with a procedure of the type, discussed in section 4, the following result canbe derived: every class of graphs that does not contain all planar graphs and thatis closed under minor taking, can be recognized in O(n) time. (See also [13].)Many applications of this theory were found by Fellows and Langston [58, 60, 61].Note however that the constants hidden in the `O'-notation may be quite large, andthat the proof of theorem 5.1 is inherently non-constructive (in a deep mathematicalsense) [66]. I.e., it is not possible in all cases to extract the obstruction set of a classof graphs G, given a formal proof that G is minor closed. Thus, we may arrive in asituation where we know that a polynomial algorithm exists for the problem withoutknowing the algorithm itself. Also, the algorithms are recognition algorithms: theydo not constuct anything (like a vertex ordering, tree-decomposition, etc.)A technique that allows us in some cases to overcome non-constructive aspectsof this theory is self-reduction, advocated by Fellows and Langston, see e.g. [21, 39,59, 63].Self reduction is the technique to consult a decision algorithm a number of timeswith di�erent inputs in order to construct a solution for the original problem. As8



an example, consider the problem of �nding a simple path of length at least k (kconstant) in an undirected graph. (There are direct and more e�cient algorithms forthis problem [27, 63]; the solution here is presented only to explain the technique.)The class of graphs that do not contain such a path is closed under minor taking,and does not contain all planar graphs, so we have a linear time algorithm, decidingwhether a given graph contains a simple path of length at least k. Given a graphG, we can solve the problem in O(n � e) time by �rst testing whether G containsa desired path, and then repeatedly trying to remove an edge from G, such thatthe resulting graph still contains a simple path of length k. When no edge can bedeleted anymore, the resulting graph is precisely the desired path.Even when we do not know the obstruction set, in several cases it is still possibleto construct polynomial time algorithms based on minor tests (see [63]).In some cases, obstruction sets, and hence the decision algorithms themselvesare computable [12, 16, 40, 57, 62, 78, 81, 91, 103, 131, 136]. The size of theobstruction sets can grow very fast: for instance, the obstruction set of the graphswith pathwidth at most k contains at least k!2 trees, each containing 5�3k�12 vertices[136]. This clearly limits the practicality of the approach described above.Also, in some cases, linear time minor tests are possible [27, 25, 54, 63]. Forinstance, suppose that H is a cycle of length k. The algorithm is as follows: �rstmake a depth-�rst search spanning tree T = (V; F ) of the input graph G = (V;E).If there is a backedge between a vertex v and a predecessor w of v which is at leastk� 1 levels above v in T , then G contains H as a minor, stop. Otherwise, construct(fXv j v 2 V g; T = (V; F )), with Xv = fvg[fw j w is a predecessor of v and di�ersat most k� 2 levels from v in Tg. This is a tree-decomposition of G with treewidthat most k� 2. Use this tree-decomposition to solve the problem in linear time. (See[63].)6 Finding tree-decompositionsIn this section we consider the problem of �nding tree-decompositions, and deter-mining the treewidth of a graph. Unfortunately, determining whether the treewidthof a given graph G = (V;E) is at most a given integer k is NP-complete [6]. Thelatter result holds also for pathwidth [6]. The complexity of these problem has beenstudied for several classes of graphs. Table 1 mentions several of the known resultsof this type.Polynomial time approximation algorithms with O(logn) performance ratio fortreewidth, and O(log2 n) performance ratio for pathwidth, are presented in [29].For several classes of perfect graphs, polynomial time approximation algorithmscan be found in [84]. Seymour and Thomas gave a polynomial time algorithm forthe branchwidth of planar graphs [134]; this directly implies a polynomial timeapproximation algorithm for the treewidth of planar graphs with a performanceratio 112 [114]. 9



Class Treewidth PathwidthBounded degree N [35] N [101] (3)Trees/Forests C P [133]Series-parallel graphs C P [32]Outerplanar graphs C P [32]Halin graphs C [143] P [32]k-Outerplanar graphs C [20] P [32]Planar graphs O N [101] (3)Chordal graphs P (1) N [68]Starlike chordal graphs P (1) N [68]k-Starlike chordal graphs P (1) P [68]Co-chordal graphs P [85] P [85]Split graphs P (1) P [68, 84]Bipartite graphs N NPermutation graphs P [34] P [34]Circular permutation graphs P [34] OCocomparability graphs N [6, 72] N [6, 72]Cographs P [36] P [36]Chordal bipartite graphs P [86] N [35]Interval graphs P (2) P (2)Circular arc graphs P [135] OCircle graphs P [83] N [35]P = polynomial time solvable. C = constant, hence linear time solvable. N =NP-complete. O = Open problem. (1) The treewidth of a chordal graph equals itsmaximum clique size minus one. (2) The treewidth and pathwidth of an intervalgraphs equal its maximum clique size minus one. (3) NP-completeness is shown forvertex separation number, but this is equivalent to pathwidth.Table 1: Complexity of Pathwidth and Treewidth on di�erent classes of graphs
10



Remove a vertex of degree 1

Contract over a vertex
with degree 2

Figure 4: Rewriting a graph with treewidth � 2For constant k, polynomial time algorithms exist for the problems. The graphswith treewidth 1 are exactly the forests. Algorithms that recognize graphs withtreewidth 2 and 3 in linear time, and �nd the corresponding tree-decompositionswere described by Matousek and Thomas [97], using results from [9]. A similaralgorithm (with a quite involved case analysis) for treewidth 4 was found recentlyby Sanders [130]. For example, the connected graphs with treewidth 2 are exactlythose graphs that can be rewritten to a single vertex, using the operations shown in�gure 4. For larger k, also recognition algorithms based on rewriting exist [7]. (In[7], a much larger class of problems is also shown to be solvable with these rewritetechniques.) The latter algorithms can at present, not produce a correspondingtree-decomposition of the input graph.For arbitrary �xed k, an O(n logn) algorithm can be found, using the followingresult, due to Reed [108].Theorem 6.1For every constant k, there exists an O(n logn) algorithm, that given a graph G =(V;E), either outputs that the treewidth of G is larger than k, or outputs a tree-decomposition of G with treewidth at most 3k + 2.Actually, the result proven by Reed has a number, larger than 3k + 2. Minorimprovements give the result stated above. The running time of this algorithm issingly exponential in k. Similar, but slower algorithms have been found by Robertsonand Seymour [119] and by Lagergren [89], the latter result also has an e�cientparallel variant. 11



tree−decomposition
of G[V1 U S]

tree−decomposition
of G[V2 U S]

X U S

U
X V1

U
X V2

S S... ...

Figure 5: Illustration to approximation algorithmThese algorithms and the approximation algorithm in [29] are based on repeat-edly �nding separators. An 1/3-2/3 separator of a set W � V in a graph G = (V;E)is a set S � V , such that V � S can be partitioned into two non-adjacent sets ofvertices V1, V2, such that both V1 and V2 contain at most 2jW j=3 vertices in W .Each of the algorithms can be described by a recursive procedure which is calledwith two arguments: a graph G0 = (V 0; E 0) (an induced subgraph of G), and a setof vertices X � V 0. The algorithm produces a tree-decomposition with the rootnode set Xr of T containing all vertices in X (X � Xr). It works basically asfollows: When V 0 is `small enough', yield a one-node tree-decomposition, the nodecontaining all vertices in V 0. Otherwise, �rst �nd a `small' 1/3-2/3 separator S ofX in G0, separating V 0� S into V1 and V2. Call the procedure recursively for graphG[V1 [ S] and set S [ (X \ V1), and for graph G[V2 [ S] and set S [ (X \ V2). Thedesired tree-decomposition is obtained by taking one new node containing X \ S,and connecting this node to the root nodes of the two tree-decompositions yieldedby the recursive calls of the procedure (see �gure 5). If the treewidth of G is at mostk, then a 1/3-2/3 separator, as needed for the algorithm, exists of size at most k,and can be found, in time, linear in V 0, using 
ow techniques [119]. Starting withan arbitrary set X of size at most 3k, it follows with induction, that each call of theprocedure uses sets X of size at most 3k, assuming the treewidth of G is at most k.(jX \ Vi [ Sj � 2jXj=3 + jSj � 2k + k.) Hence, the algorithm produces in this casea tree-decomposition of treewidth less than 4k.Reed [108] has shown that one can also �nd small sized separator sets S, that donot only separate X, but also partition V 0 into sets of size at most 3=4 of jV 0j. Thisgives a recursion depth of O(logn), and results in an O(n logn) algorithm. (Theexpose above is only a very rough sketch of some of the most important ideas of thealgorithms. See further [29, 89, 108, 119].)12



Using the algorithm of theorem 5.1, and a constant number of minor tests, itfollows that the `treewidth � k' and `pathwidth � k' problems (for constant k)are decidable in O(n logn) time. (Use that the treewidth and pathwidth can notincrease by taking minors.) However, it is also possible to obtain direct, explicit andconstructive algorithms for the problems.Both Lagergren and Arnborg [91] and Bodlaender and Kloks [31, 82] give suchan algorithm, using an involved application of the technique, discussed in section 4.Independently, results of a similar nature were obtained by Abrahamson and Fellows[1]. From these results it follows that a technique of Fellows and Langston [62] canbe used to compute the corresponding obstruction set. Bodlaender and Kloks [31]also discuss how in the same time bounds the path- or tree-decompositions withpathwidth or treewidth at most k can be found, if existing.Recently, the author has found a linear time algorithm for the problems to decidewhether a graph has pathwidth or treewidth at most some constant k, and if so, to�nd a path- or tree-decomposition with pathwidth or treewidth at most k [24]. Thisalgorithm uses a recursion technique, and the result in [31] as essential ingredients.A study to dynamic algorithms for graphs with small treewidth has been madeby Cohen et al. [43] and recently by the author [23].AcknowledgementsI thank Bruno Courcelle, Jens Gustedt, Ton Kloks, Mike Fellows, Detlef Seese, andAndrzej Proskurowski for useful comments on earlier versions of this tourist guide.References[1] K. R. Abrahamson and M. R. Fellows. Finite automata, bounded treewidthand well-quasiordering. In Graph Structure Theory, Contemporary Mathemat-ics vol. 147, pages 539{564. American Mathematical Society, 1993.[2] R. Agarwala and D. Fernandez-Baca. A polynomical-time algorithm for thephylogeny problem when the number of character states is �xed. Manuscript,1992.[3] S. Arnborg. E�cient algorithms for combinatorial problems on graphs withbounded decomposability { A survey. BIT, 25:2{23, 1985.[4] S. Arnborg. Graph decompositions and tree automata in reasoning with un-certainty. Manuscript, to appear in Journal of Experimental and TheoreticalAI, 1991.[5] S. Arnborg. Some PSPACE-complete logic decision problems that becomelinear time solvable on formula graphs of bounded treewidth. Manuscript,1991. 13



[6] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of �nding em-beddings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277{284, 1987.[7] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theoryof graph reduction. In H. Ehrig, H. Kreowski, and G. Rozenberg, editors,Proceedings of the Fourth Workshop on Graph Grammars and Their Appli-cations to Computer Science, pages 70{83. Springer Verlag, Lecture Notes inComputer Science, vol. 532, 1991. To appear in J. ACM.[8] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposablegraphs. J. Algorithms, 12:308{340, 1991.[9] S. Arnborg and A. Proskurowski. Characterization and recognition of partial3-trees. SIAM J. Alg. Disc. Meth., 7:305{314, 1986.[10] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problemsrestricted to partial k-trees. Disc. Appl. Math., 23:11{24, 1989.[11] S. Arnborg and A. Proskurowski. Canonical representations of partial 2- and 3-trees. In Proceedings of the 2nd Scandinavian Workshop on Algorithm Theory,pages 310{319. Springer Verlag, Lecture Notes in Computer Science, vol. 477,1990.[12] S. Arnborg, A. Proskurowski, and D. G. Corneil. Forbidden minors charac-terization of partial 3-trees. Disc. Math., 80:1{19, 1990.[13] S. Arnborg, A. Proskurowski, and D. Seese. Monadic second order logic, treeautomata and forbidden minors. In E. B�orger, H. Kleine B�uning, M. M.Richter, and W. Sch�onfeld, editors, Proceedings 4th Workshop on ComputerScience Logic, CSL'90, pages 1{16. Springer Verlag, Lecture Notes in Com-puter Science, vol. 533, 1991.[14] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear time computation ofoptimal subgraphs of decomposable graphs. J. Algorithms, 8:216{235, 1987.[15] D. Bienstock. Graph searching, path-width, tree-width and related problems(a survey). DIMACS Ser. in Discrete Mathematics and Theoretical ComputerScience, 5:33{49, 1991.[16] D. Bienstock and N. Dean. On obstructions to small face covers in planargraphs. J. Comb. Theory Series B, 55:163{189, 1992.[17] D. Bienstock, N. Robertson, P. D. Seymour, and R. Thomas. Quickly exclud-ing a forest. J. Comb. Theory Series B, 52:274{283, 1991.
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